Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1 entries in the Bibliography.


Showing entries from 1 through 1


2021

Transpolar Arcs During a Prolonged Radial Interplanetary Magnetic Field Interval

Transpolar arcs (TPAs) are believed to predominantly occur under northward interplanetary magnetic field (IMF) conditions with their hemispheric asymmetry controlled by the Sun-Earth (radial) component of the IMF. In this study, we present observations of TPAs that appear in both the northern and southern hemispheres even during a prolonged interval of radially oriented IMF. The Defense Meteorological Satellite Program (DMSP) F16 and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellites observed TPAs on the dawnside polar cap in both hemispheres (one TPA structure in the southern hemisphere and two in the northern hemisphere) during an interval of nearly earthward-oriented IMF on October 29, 2005. The southern hemisphere TPA and one of the northern hemisphere TPAs are associated with electron and ion precipitation and mostly sunward plasma flow (with shears) relative to their surroundings. Meanwhile, the other TPA in the northern hemisphere is associated with an electron-only precipitation and antisunward flow relative to its surroundings. Our observations indicate the following: (a) the TPA formation is not limited to northward IMF conditions; (b) the TPAs can be located on both closed field lines rooted in the polar cap of both hemispheres and open field lines connected to the northward field lines draped over one hemisphere of the magnetopause. We believe that the TPAs presented here are the result of both indirect and direct processes of solar wind energy transfer to the high-latitude ionosphere.

Park, Jong-Sun; Shi, Quan; Nowada, Motoharu; Shue, Jih-Hong; Kim, Khan-Hyuk; Lee, Dong-Hun; Zong, Qiu-Gang; Degeling, Alexander; Tian, An; Pitkänen, Timo; Zhang, Yongliang; Rae, Jonathan; Hairston, Marc;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029197

radial IMF; solar wind-magnetosphere-ionosphere coupling; transpolar arc



  1